

Karmaveer Bhaurao Patil University, Satara

Syllabus for

B. Sc. I Chemistry

Under

Faculty of Science and Technology

(As per NEP 2020)

With effect from Academic Year 2024-2025

1. Title:B.Sc. Chemistry

2. Year of Implementation:2024-2025

3. Preamble: This syllabus is prepared for first year undergraduate students. At this level, to develop their interest towards chemistry as basic science and also to prepare them for the academic and industrial exposure simultaneously. Introduction of instrumental techniques with the regular chemistry exercises will help to enhance analytical thinking of the students. The interdisciplinary approach with vigor and depth is compatible to the syllabi of other universities, at the same time is not rigid for the students at first year of their graduation. The units in the syllabus are well defined with scope and the number of lectures. The references are mentioned with relevance.

4. General Objectives of the Course:

- 1. To develop the content of the syllabus according to the UGC norms.
- 2. To inculcate fundamental principles of chemical sciences in students.
- 3. To establish the link between theory and laboratory practice by conducting laboratory experiments which help students to improve the understanding of the concepts.
- 4. To enhance student's sense of enthusiasm for chemistry and to involve them in an intellectually stimulating experience of learning in a supportive environment.

5. Duration: One year

6. Pattern:Semester

7. Medium of Instruction: English

8. Structure of Course:

Level	Sem	Cou	ırse	Cou	irse	Cou	ırse	OF	2 / IKS/	VEC	Total
]	I	I	I	I	Π	OE	IKS	VEC	
		Т	Р	Т	P	Т	Р				
	Ι	4	2	4	2	4	2	2	2	-	22
4.5	Π	4	2	4	2	4	2	2	-	2	22

Subject	Sem	Name of Major Papers	Open Elective Course (OE)	Indian Knowledge System (IKS) and Value Education Course (VEC)
Chemistry (Level 4.5)	I	 BCT 111: Physical Chemistry BCT 112: Inorganic Chemistry BCP 113-Practical I 	BCTOE-1	BCT IKS-1 (Generic)
	Ш	 3) BCT 121: Organic Chemistry 4) BCT 122: Analytical Chemistry BCP 123-Practical II 	BCTOE- 2	BCTVEC-1 Democracy, Election and Indian Constitution

Semester		eory Course Credits 4	Practical Course (Semester Wise) Credits 2
	Course Code: BCT-111	Course Code: BCT-112	Course Code: BCP
Ι	Course I-	Course II-	113: Lab I
	Physical Chemistry	Inorganic Chemistry	
	Course Code: BCT-121	Course Code: BCT-122	Course Code: BCP
Π	Course III-	Course IV-	123: Lab II
	Organic Chemistry	Analytical Chemistry	

Structure and Titles of Major Course Semester I

Course I : Physical Chemistry (BCT 111)

Subject	Unit No.	Title	Hrs.	Credits
	Ι	Chemical Thermodynamics	08	
Physical	II	Chemical Equilibria	08	2
Chemistry	III	Chemical Kinetics	08	
	IV	Kinetic Theory of Gases	06	_
	Grand T	30		

Course II: Inorganic Chemistry (BCT 112)

Subject	UnitNo.	Title	Hrs.	Credits
	Ι	Quantum Chemistry and Atomic Structure	08	
Inorganic	II	Ionic Bonding	08	
Chemistry	III	Covalent Bonding	08	2
	IV	Molecular Orbital Theory (MOT)	06	
	G	rand Total	30	

Semester II Course III: Organic Chemistry (BCT-121)

Subject	UnitNo.	Title	Hrs.	Credits
	Ι	Reactive Intermediates	08	
0	II	Stereochemistry	08	
Organic Chemistry	III	Chemistry of Aliphatic Hydrocarbon	08	2
	IV	Chemistry of Aromatic Hydrocarbons	06	
	Grand Total			

Course IV: Analytical Chemistry (BCT122)

Subject	UnitNo.	Title	Hrs.	Credits
	Ι	Introduction to Physico-chemical Principles	08	
Analytical Chemistry	II	Purification and Separation Methods	08	2
	III	Introduction to Chromatography	08	
	IV	Theory of Titrimetric Analysis	06	
	G	rand Total	30	

	B. Sc. Part I, Semester I	
Credits 2	Course I: Physical Chemistry Course Code: BCT 111	No. of Hrs. 30
	Course Objectives: Students should be able to	
	1. Understand the basic concepts in thermodynamics.	
	2. Learn principle behind the chemical equilibrium.	
	3. Recall the knowledge of rates of chemical reactions.	
	4. Study the properties of ideal and non-ideal gases.	
Unit	Title and Syllabus	Hrs.
No.		Allotted
	Chemical Thermodynamics:	
	1.1 Introduction, Basic Terms	
	1.2 Spontaneous and non-spontaneous process with examples, Statement	
	of Second law of Thermodynamics, Carnot's cycle, its efficiency,	
Ι	Carnot's Theorem (Heat engine)	08
	1.3 Concept of entropy, physical significance of entropy. Entropy as a	
	function of volume and temperature, pressure and temperature, entropy	
	of mixing of gases, entropy change accompanying phase transition	
	1.4 Third law of thermodynamics	
	1.5 Numerical problems	
	Chemical Equilibria:	
	2.1 Concept of free energy, Free energy change in chemical reaction	
	2.2 Thermodynamic derivation of law of chemical equilibrium	
II	2.3 Distinction between ΔG and ΔG^0 , Le Chatelier's principle, conditions	08
	for maximum yield in industrial processes like manufacture of	
	ammonia and sulphuric acid	
	2.4 Relationship between K_p , K_c and K_x for reactions involving ideal	
	gases	
	Chemical Kinetics:	
	3.1 Introduction, Rate of reaction, Definition and units of rate constant,	
	Factors affecting rate of reaction, Dermitton and units of rate constant,	
	pressure, temperature and catalyst)	
	3.2 Order and Molecularity of reaction, Zero order reaction, First order	08
III	reaction, Characteristics, Examples	
	3.3 Pseudo-unimolecular reactions, Examples	
	3.4 Second order reaction:Derivation of rate constant for equal and	
	unequal concentration of thereactants, Characteristics, Examples	
	3.5 Determination of order of reaction by i) integration method	
	ii) graphical method iii) Half-life method	
	Kinetic Theory of Gases:	
	4.1Postulates of Kinetic Theory of Gases	
	4.2 Ideal and Non ideal gases, Deviation of real gases from ideal behaviour,	
	compressibility factor, causes of deviation	
	4.3 Van der Waals equation of state for real gases. Explanation of real gas	
IV	behavior by Van der Waal's equation, Boyle temperature (derivation not	<u> </u>
	required)	06

4.4 Critical Phenomena: PV-isotherms of real gases (Andrew's isotherms),
Continuity of state, Critical constants and their calculation from Van der
Waals equation
4.5 Temperature dependence of these distributions. Most probable, average and
root mean square velocities (no derivation), Numerical Problems
Course Outcomes: After completion of the course students
will be able to
1. Relate the laws of thermodynamics with real life examples.
2. Derive relationship between various equilibrium constants.
3. Illustrate and derive the rate constant of various reactions.
4. Differentiate between ideal and non-ideal behavior of gases.
References:
1. PuriB.R., Sharma,L.R., PathaniaM.S. 2020. Principles of Physical
Chemistry: Vishal Publishing Company.
2. Soni P. L., Dharmrha O. P., Dash U. N. 2011. Text Book of Physical
Chemistry: Sultan Chand and Sons.
3. Bahl Arun, Bahl B. S., Tuli G. D. 2020. Essential of Physical
Chemistry: S. Chand. and Company Ltd.
4. Rao, C. N. R. 2009. University General Chemistry -An Introduction to
Chemical Science: New Delhi, Macmillan.

Credits 2	Course II: Inorganic Chemistry Course Code: BCT – 112	No. of Hrs. 30
	 Course Objectives: Students should be able to 1. Learn basic principles and theories of atomic structure. 2. Recall the concept of bonding in ionic compounds. 3. Acquire the knowledge of theories of covalent compounds. 4. Recite the information of bonding in homo and hetero diatomic molecules. 	
Unit No.	Title and Syllabus	Hrs. Allotted
Ι	 Introduction to Quantum Chemistry & Atomic Structure: 1.1 Black Body radiation, Photoelectric effect, Compton Effect 1.2 Plank's theory, De-Broglie's relationship 1.3 Bohr's theory of hydrogen atom, Hydrogen spectrum 1.4 Wave theory, Heisenberg's uncertainty principal 1.5 Atomic orbitals & Quantum numbers 1.6 Pauli's exclusion principle, Hund's multiplicity rule, Aufbau principle, Electronic configuration of elements. 	08
П	 Ionic Bonding: 2.1 Definition, General Characteristics of ionic bonding, Formation of ionic bonds 2.2 Energetics of ionic bond formation statement of Born-Lande equation for calculation of lattice energy 2.3 Born– Haber cycle & it's applications 2.4 Fajan's rules, Radius ratio, Radius ratio effects & calculation of radius ratio for octahedral geometry 2.5 Structure of NaCl, Rutile (TiO₂) 	08
III	Covalent Bonding: 3.1 VBT approach 3.2Valence shell electron pair repulsion theory (VSEPR) 3.3VSEPR approach, assumptions, examples and limitations	08
IV	 Molecular Orbital Theory (MOT): 4.1Introduction to LCAO method 4.2 Formation of bonding, anti-bonding & non-bonding molecular orbitals 4.3 Conditions for successful overlaps 4.4 Types of overlaps, Energy level sequence for molecular orbitals when n = 1 & n = 2 4.5 Bond order & it's significance, Molecular orbital diagrams for- a. Homo nuclear diatomic molecules – He₂, B₂, N₂, O₂, O₂⁺ b. Hetero nuclear diatomic molecules – CO, NO, NO⁺ 4.6 Comparison between VBT & MOT 	06

Course Outcomes: After completion of the course students will
be able to
1. Draw electronic configuration of each element on the basis of fundamental principles.
2. Elucidate the structures of ionic compounds.
3. Describe the various theories related to covalent bonding in inorganic compounds.
4. Compare between the theories like VBT and MOT.
References:
1. Puri, Sharma & Kalia. 2020. Principles of Inorganic Chemistry: Vishal
Publishing Co.
2. Chanda Manas. 2019. Atomic Structure and Chemical Bonding: International
Publishing House Pvt. Ltd.
3. Prasad, R. K. 2009. Quantum Chemistry: New Age Science.
4. Huheey James, Keiter Allen, Keiter Richard, Medhi Okhil. 2014. Inorganic
Chemistry, Principles of Structure and Reactivity: Pearson Education.
5. Madan, R. D. 1987. Modern Inorganic Chemistry: S. Chand Ltd.
6. Lee J. D. 2008. Concise Inorganic Chemistry 5 th Edition: Wiley India
Pvt. Ltd.

Credits 2	Practical Course Major Lab I BCP - 113	No. of Hrs. 60
	Course Objectives: Students should be able to	
	1. Study the enthalpy of neutralization.	
	2. Learn the preparation of buffer solutions.	
	3. Study the rate of first order and second order reactions.	
	4. Gain the knowledge of equivalent weight determination by hydrogen	
	displacement method.	
	Section I - Physical Chemistry Experiments	
	1. Determination of Enthalpy of neutralization of hydrochloric acid with sodium	
	hydroxide.	
	2. Determination of heat of ionization of weak acid by using polythene bottle.	
	3. Preparation of Buffer solutions.	
	I) Sodium Acetate –Acetic Acid and Ammonium chloride – Ammonium hydroxide	
	II) Measurement of pH of buffer solution & comparison of values with theoretical	
	values	
	4. Measurement of pH of different solutions like aerated drinks, fruit juices,	
	shampoos & soaps using pH meter.	
	5. Chemical Kinetics: To study the hydrolysis of methyl acetate.	
	6. Chemical Kinetics: To investigate the reaction between $K_2S_2O_8$ and KI with	
	equal initial concentration of reactants. (Plotting of graph).	
	7. Equivalent weight: To determine equivalent weight of metal (Mg) by hydrogen	
	displacement method using Eudiometer.	
	Course Outcomes: After completion of the experiments students	
	will be able to	
	1. Determine the enthalpy of neutralization.	
	2. Measure the pH of aerated drinks and buffer solutions.	
	3. Calculate rate constant of first order and second order reaction.	
	4. Calculate the equivalent weight of metal Mg.	
	Section II - Inorganic Chemistry Experiments	
	Course Objectives: Students should be able to	
	1. Study the principle of gravimetric analysis.	
	2. Gain knowledge and analytical skills of titrimetric analysis.	
	8. Quantitative Analysis:	
	Gravimetric Analysis (volatilization gravimetric analysis)	
	Binary Mixture 1) $NH_4Cl + BaSO_4$	
	$2) ZnO + ZnCO_{3}$	
	9. Volumetric Analysis:	
	1. Preparation of standard 0.1 N KMnO ₄ solution and determine	
	the strength of given oxalic acid solution.	
	2. Determine quantity of Fe (II) ions from the given solutions by titrating with 0.1 N K Cr O solutions by using intermal	
	titrating with 0.1 N $K_2Cr_2O_7$ solutions by using internal indicator.	
	3. Estimation of amount of Acetic acid from the given vinegar	
	5. Estimation of amount of Accue actu from the given vinegal	

10. Preparation of $CuSO_4$ from $CuCl_2$.	
Course Outcomes: After completion of the experiments students	
will be able to	ĺ
1. Determine the weight of inorganic components by gravimetric analysis.	
2. Get expertise in quantitative estimation using titrimetric method.	ĺ
References:	
1. Sindhu, P. S. 2006.Practical in Physical Chemistry A Modern	
Approach: Macmillan Publication.	ĺ
2. Khosla, B. D., Garg V. C., Gulati A. 2018. Senior Practical Physical	
Chemistry: R. Chand and Co.	
3. Athawale V. D., Mathur P. 2001. Experimental Physical Chemistry:	
New Age International Private Ltd.	
4. Findlay Alexander. 2015. Experimental Physical Chemistry-Scholar's	
Choice Edition: Creative Media Partners, LLC.	
5. Vogel Arthur. 1989. Vogel's Text Book of Quantitative Analysis:	
Longman.	
6. Vogel Arthur, Bassett John. 1980. A Text Book of Quantitative	
Inorganic Analysis Including Elementary Instrumentation Analysis:	
Longman Sc and Tech.	1

	B. Sc. Part I, Semester II	
Credits	Course III: Organic Chemistry	No. of
2	Course Code: BCT 121	Hrs. 30
	Course Objectives: Students should be able to	
	1. Learn the various reactive intermediates formed in chemical reactions.	
	2. Study the different stereoisomerism phenomenon.	
	3. Recall the knowledge of aliphatic hydrocarbons.	
	4. Define the principles of aromaticity.	
Unit No.	Title and Syllabus	Hrs. Allotted
	Reactive Intermediates:	
	1.1 Introduction, Characteristics of reactive intermediates	
	1.2 Carbocation-Structure, stability, preparation methods and chemical	
	reactions	
	1.3 Carbanion- Structure, stability, preparation methods and chemical	
Ι	reactions	08
	1.4Carbon free radical-Structure, stability, preparation methods and	08
	chemical reactions	
	1.5 Carbene- Structure, stability, preparation methods and chemical	
	reactions	
	1.6 Nitrene- Structure, stability, preparation methods and chemical	
	reactions	
	1.7 Arynes- Structure, stability, preparation methods and chemical	
	Reactions	
	Stereochemistry:	
	2.1 Introduction, types of stereoisomerism2.2 Elements of Symmetry, Chiral and achiral compounds	Hrs. Allotted 08 08
	2.3 Optical isomerism in tartaric acid, 2,3-dihydoxy butanoic acid,	
II	enantiomerism and diastereomerism	
11	2.4 Gometrical isomerism: Geometrical isomerism in aldoxime &	
	ketomixes, configuration of aldoximes & ketoximes	
	2.5 Nomenclature of stereoisomerisms DL, CIP rules: R/S, E and Z	08
	(cis trans), erythro and threo	
	phatic Hydrocarbons:	
	3.1 Introduction, Classification of aliphatic hydrocarbons	
III	3.2 Alkanes: preparation methods and chemical reactions	08
	3.3 Alkenes: Preparation methods and chemical reactions	
	3.4 Alkynes: Preparation methods and chemical reactions	

	Chemistry of Aromatic Hydrocarbons:	
	4.1 Introduction to homocyclic and polycyclic aromatic hydrocarbons:	
	benzene, naphthalene, anthracene	
	4.2 Meaning of important terms; aromatic, non aromatic, anti aromatic	06
IV	compounds	
	4.3 Huckel's rules and its applications	
	4.4 Aromatic electrophilic substitution reactions, effect of substitution	
	Groups, General mechanism of electrophilic substitution reactions	
	4.5 Aromatic nucleophilic substitution (addition –elimination), orientation,	
	activating & deactivating groups	
	Course Outcomes: After completion of the course students will	
	be able to	
	1. Identify the structure and stability of various reactive intermediates.	
	2. Prepare 3D-models ie. stereoisomers of organic molecules.	
	3. Differentiate between saturated and unsaturated hydrocarbons.	
	4. Classify the organic compounds as aromatic, anti-aromatic and non-	
	aromatic.	
	References:	
	1. Morrison Robert, Boyd Robert. 1998. Organic Chemistry: Prentice Hall.	
	2. Sykes Peter. 2003. A Guidebook to Mechanism in Organic Chemistry: Pearson Education.	
	3. Mukharji S. M., Singh S. P., Kapoor R. P., Dass R. 2017. Organic Chemistry-As	
	per UGC Syllabus: New Age International Publishers.	
	4. Eliel Ernest, Welen Samual. 1994. Stereochemistry of Carbon Compounds: Wiley India Ed ⁿ .	
	5. Kalsi P. S. 2017. Stereochemistry: Conformation & Mechanism: New Age International Publishers.	
	6. Bansal Raj. 2016. A Text books of Organic Chemistry: New Age International Publishers.	
	7. Ahluwalia V. K., Parashar Rakesh. 2010. Organic Reaction	
	Mechanism: Narosa Publishing House.	

Credits 2	Course IV:Analytical Chemistry Course Code: BCT 122	No. of Hrs. 30
	Course Objectives: Students should be able to	
	1.Define physico-chemical principles of analytical chemistry.	
	2.Gain knowledge of separation techniques of solids and liquids.	
	3. Know the technical idea of separation of components from their mixtures by chromatography.	
	4. Remember the theories behind titrimetric analysis.	
Unit		Hrs.
No.	Title and Syllabus	Allotted
	Introduction to Physico-chemical Principles:	
	1.1 Strong and weak electrolytes	
	1.2 Degree of Ionization, Factors affecting degree of ionization, Ionization	08
Ι	constant and ionic product of water. Ionization of weak acids & bases,	
	Common Ion effect	
	1.3 pH scale, Buffers, types of buffer	
	1.4 Solubility & solubility product of sparingly soluble salt	
	1.5 Numerical problems	
	Purification and Separation Methods:	
	2.1 Distillation techniques, Distillation of liquid mixtures	
II	2.2 Types of columns and packing, Condensers, Vacuum distillation,	08
11	Spinning-band distillation, Steam distillation, Keigelrohr distillation,	00
	Isopiestic or isothermal distillation 2.3 Recrystallization Techniques	
	2.4 Filtration, Choice of solvents, Petroleum ethers, Mixed solvents	
	2.5 Sublimation	
	Introduction to Chromatography:	
	3.1 Introduction, Basic Principle of Chromatography, Basic terms	Hrs. Allotted
	3.2 Classification of Chromatography, Paper Chromatography-	
	Principle, Methodology-types of papers and treatment, sample	
III	loading, choice of solvent, development-ascending, descending,	
	circular, location of spots, determination of R _f value,	
	Applications, Advantages and disadvantages	
	3.3 Thin layer chromatography; Principle, Solvent system, stationary	
	phases, preparation of TLC plate, Detecting reagents,	
	methodology-sample loading, development, detection of spot, $R_{\rm f}$	
	value, Applications, Advantages and disadvantages	
	3.4 Comparison of Paper Chromatography and TLC	

	Theory of Titrimetric Analysis:	
	4.1 Definition of Terms: Titrand, Titrant, Equivalence Point, titration,	
	indicator	
IV	4.2 Theory of Acid-Base Titration	06
	4.3 Theory of Acid-Base Indicators	
	4.4 Titration of Strong Acid-Strong Base, Strong Acid-Weak Base, Weak	
	Acid-Weak base with titration curves, Choice of Indicators	
	Course Outcomes: After completion of the course students will	
	be able to	
	1. Explain the physico-chemical principles of basic chemical analysis.	
	2. Purify the solid and liquid compounds by separation techniques.	
	3. Differentiate between chromatographic techniques.	
	4. Describe the terms involved in titrimetric analysis and sketch the titration	
	curves.	
	References:	
	1. Dahm Donald, Nelson Eric. 2012. Calculation in Chemistry: W. W.	
	Norton & Company.	
	2. Rao C. N. R. 2015. University General Chemistry - An Introduction to	
	Chemical Science: Laxmi Publications.	
	3. Soni P., Dharmarha O., Dash U. 2011. Text book of Physical	
	Chemistry: Sultan Chand and Son.	
	4. Bassett J., Denney R. C., Jeffary G. H., Medha J., 1994. Vogels	
	Textbook of Quantitative Inorganic Analysis: Longman Higher	
	Education.	
	5. Chatwal Gurdeep, Anand Shyam. 2016. Instrumentation Methods of	
	Chemical Analysis: Himalaya Publishing House.	
	6. Sharma B. K. 2000. Industrial Chemistry: Goel Publishing Housing.	

Credits 2	Practical Course Major Lab II BCP - 123	No. of Hrs. 60
	Course Objectives: Students should be able to	
	1. Study the volumetric estimation of compound quantitatively.	
	2. Determine the functional groups of molecules by qualitative analysis.	
	3. Gain the knowledge of preparation of derivatives of organic compounds.	
	Section I - Organic Chemistry Experiments	
	1. Volumetric Analysis: Estimation of Aspirin.	
	2. Estimation of Acetamide/Aniline.	
	3. Organic Qualitative analysis of organic compounds like Benzoic acid,	
	alpha naphthol, aniline, acetone, ethyl acetate, acetanilde, urea, thiourea.	
	4. Preparations of derivatives of organic compounds	
	i) Nitration	
	ii) Oximes of aldehydes & ketones	
	iii) 2,4-dinitropherylhydrazone of aldehydes & ketones	
	iv) Picrate	
	v) Oxalate	
	Course Outcomes: After completion of the experiments students	
	will be able to	
	1. Quantify the organic compounds using volumetric estimation.	
	2. Identify organic compounds using qualitative analysis.	
	3. Prepare the derivatives of organic compounds.	
	Section II – Analytical Chemistry Experiments	
	Course Objectives: Students should be able to	
	1. Study the principles of chromatographic separation of elements from	
	binary mixture.	
	2. Learn the purification techniques of solid and liquid compounds.	
	5. Separation and identification of cation by paper chromatographic	
	technique from the following mixtures	
	i) $Ni^{2+} + Cu^{2+}$, ii) $Ni^{2+} + Co^{2+}$, iii) $Cu^{2+} + Co^{2+}$	
	6. Identify & separate mixture of amino acids / sugar by paper	
	chromatography.	
	7. Purification of compounds by crystallization using suitable solvents (Any	
	two). 8. Purification of compounds by sublimation (Any two).	
	 9. Purification of compounds by distillation (Any two). 	
	Course Outcomes: After completion of the experiments,	
	students will be able to:	
	1. Isolate and identify the metal ions from the inorganic binary mixture.	
	 2. Recrystallize the impure compounds to pure one. 	
	 3. Distillate volatile organic solvents. 	
	4. Purify the solid compounds by sublimation.	

References:	
. Vogel Arthur. 1989. Vogel's Text Book of Quantitative Analy	sis:
Longman.	
2. Vogel Arthur, Bassett John. 1980. A Text Book of Quantitative	e
Inorganic Analysis Including Elementary Instrumentation Ana	alysis:
Longman Sc and Tech.	
3. Pandey O. P., Bajpay D. N., Giri S. 2010. Practical Chemistry	: For B. Sc.
I, II and III Year Students of AllIndiaUniversities: S Chand.	
4. Venkateswaran V. 2012. Basic Principles of Practical Chemistr	y: Sultan
Chand and Sons.	
